
ReactGenie: An Object-Oriented State Abstraction for Complex
Multimodal Interactions Using Large Language Models
Jackie (Junrui) Yang
jackiey@stanford.edu
Stanford University
Stanford, CA, USA

Karina Li
karinali@stanford.edu
Stanford University
Stanford, CA, USA

Daniel Wan Rosli
danwr@stanford.edu
Stanford University
Stanford, CA, USA

Shuning Zhang
zhang-sn19@mails.tsinghua.edu.cn

Tsinghua University
Beijing, China

Yuhan Zhang
zhangyh@stanford.edu
Stanford University
Stanford, CA, USA

Monica S. Lam
lam@cs.stanford.edu
Stanford University
Stanford, CA, USA

James A. Landay
landay@stanford.edu
Stanford University
Stanford, CA, USA

ReactGenie Runtime

Defined States

Order.GetActiveCart().addItems(items:O
rder.OrderHistory().matching(field:.re
staurant,value:Restaurant.current())
[0].items)

!

Define Object-
Oriented States

Taco Bell

Taco 3/3
Order

Restaurant

Mr Sun 3/3
Order

Crunchwrap
FoodItem

Quesadilla
FoodItem

Taro boba
FoodItem

Define
UI Components

Restaurant
ItemView

OrderItem
View

Food
Thumbnail

“Reorder my last meal
from this restaurant.”

Developer-Coded GUI Generated Multimodal UI

Language
Parser

Input
UI Mapping

ReactGenieDSL

Output
UI Mapping

 ①

 ②

④

Taco Bell
Restaurant

New Taco
Order

Taco 3/3
Order

UI Reference

Result③

Figure 1: ReactGenie allows developers to easily build multimodal mobile applications by defining object-oriented states and
UI components. (Left) ReactGenie provides this new yet familiar interface to create a GUI by defining states (data and logic)
and UI components (transformation from data to UI representation). (Right) ReactGenie generates a natural language parser
from developer-defined states and generates input and output UI mappings from developer-defined UI components. It can then
execute complex multimodal commands by composing the methods and properties of states and presenting the results using
existing UI components.

ABSTRACT
Multimodal interactions have been shown to be more flexible, ef-
ficient, and adaptable for diverse users and tasks than traditional
graphical interfaces. However, existing multimodal development
frameworks either do not handle the complexity and composi-
tionality of multimodal commands well or require developers to
write a substantial amount of code to support these multimodal

arXiv, ,
2023. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

interactions. In this paper, we present ReactGenie, a programming
framework that uses a shared object-oriented state abstraction to
support building complex multimodal mobile applications. Having
different modalities share the same state abstraction allows devel-
opers using ReactGenie to seamlessly integrate and compose these
modalities to deliver multimodal interaction.

ReactGenie is a natural extension to the existing workflow of
building a graphical app, like theworkflowwith React-Redux. Devel-
opers only have to add a few annotations and examples to indicate
how natural language is mapped to the user-accessible functions in

ar
X

iv
:2

30
6.

09
64

9v
1

 [
cs

.H
C

]
 1

6
Ju

n
20

23

https://orcid.org/0000-0002-2064-5231
https://orcid.org/0000-0002-4145-117X
https://orcid.org/0009-0000-7720-9329
https://orcid.org/0000-0002-7626-6468
https://orcid.org/0000-0003-1520-8894
https://doi.org/XXXXXXX.XXXXXXX

arXiv, ,
Jackie (Junrui) Yang, Karina Li, Daniel Wan Rosli, Shuning Zhang, Yuhan Zhang, Monica S. Lam, and James A. Landay

the program. ReactGenie automatically handles the complex prob-
lem of understanding natural language by generating a parser that
leverages large language models.

We evaluated the ReactGenie framework by using it to build
three demo apps. We evaluated the accuracy of the language parser
using elicited commands from crowd workers and evaluated the
usability of the generated multimodal app with 16 participants.
Our results show that ReactGenie can be used to build versatile
multimodal applications with highly accurate language parsers,
and the multimodal app can lower users’ cognitive load and task
completion time.

CCS CONCEPTS
• General and reference → Design; • Software and its engi-
neering → Graphical user interfaces; Object oriented frameworks; •
Information systems→ Multimedia and multimodal retrieval; •
Human-centered computing→ User interface programming.

KEYWORDS
multimodal interactions, development frameworks, programming
framework, large-language model, natural language processing
ACM Reference Format:
Jackie (Junrui) Yang, Karina Li, Daniel Wan Rosli, Shuning Zhang, Yuhan
Zhang, Monica S. Lam, and James A. Landay. 2023. ReactGenie: An Object-
Oriented State Abstraction for Complex Multimodal Interactions Using
Large Language Models. In Proceedings of Uploaded to arXiv (arXiv). ACM,
New York, NY, USA, 15 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Multimodal interactions allow users to use a combination of in-
put and output modalities, such as touch, voice, and graphical user
interfaces (GUIs). They have been shown to offer more flexibility, ef-
ficiency, and adaptability for diverse users and tasks [47]. However,
developing multimodal applications remains a challenging task for
developers. Existing frameworks [10, 12, 28, 37, 38, 44, 45] often
require developers to manually handle the low-level control logic
for voice interactions and manage the complexity of multimodal
commands. This manual process significantly increases develop-
ment costs and time and often limits the expressiveness of voice
and multimodal commands. There are systems [24, 36, 48] that can
automatically handle voice commands by converting them to UI
actions, but they are prone to error and do not allow developers to
fully control the behavior of the app.

The goal of this research is to give developers a simple abstrac-
tion, while automatically handling the complexity of natural lan-
guage understanding and composition of different modalities. We
focus on the smartphone, the most popular device with millions of
existing apps. We focus on letting users access off-screen content
and actions, and complete tasks involving multiple taps in a single
multimodal command, as illustrated in Figure 2. We aim to reuse the
existing declarative GUI development workflow with little added
workload to encourage the adoption of multimodal interactions
and make multimodal interactions more accessible to end-users.

This paper presents ReactGenie1, a declarative programming
framework for developing multimodal applications. ReactGenie
1source code: https://jya.ng/reactgenie

uses an object-oriented state abstraction to represent the data and
logic of the app, and uses declarative UI components to represent the
UI. Complex multimodal commands usually require multiple state
changes. Existing declarative UI state management frameworks [5]
use a monolithic object to represent the state of the UI. In other
words, how the state changes for each step of a complex command
is hidden within the monolithic object state, making it difficult
for the framework to compose steps using different modalities.
The object-oriented state abstraction in ReactGenie, on the other
hand, encapsulates state changes in each step as methods with
strictly typed parameters and return values. This allows easy and
accurate composition of methods and properties of existing states
for executing complex multimodal commands.

One example of a complex multimodal interaction is shown in
the center of Figure 1: the user says, “Reorder my last meal from
this restaurant” while touching the display of a restaurant on the
screen. These commands are intuitive for human communication,
but they actually involve multiple steps (retrieving the history of
orders from the restaurant, creating an order, and adding food to
the order) for the app and require combining inputs from both
modalities, hence being “complex”.

With ReactGenie, developers build graphical interfaces in a sim-
ilar development workflow to a typical React + Redux application.
To add multimodality, the developer supplies a few annotations
and examples that indicate what methods/properties can be used in
voice and how they can be used. By supplying the extracted class
and function definitions from the developer’s state code as well as
few-shot examples, ReactGenie creates a parser that leverages large
language models (LLM) [15] to translate the natural language to our
new domain-specific language (DSL), ReactGenieDSL. Combined
with our custom-designed interpreter, ReactGenie can seamlessly
handle multimodal commands and present the result in the graphi-
cal UI that the developer built.

As shown in Figure 1 left, developers can build object-oriented
state abstraction classes dealing with data changes and UI compo-
nents containing an explicit mapping between the state and the
UI. Similar to React, when the user interacts with the app, the
state of the app will be updated and the UI will be re-rendered.
What is unique about ReactGenie is its ability to support complex
multimodal input (shown in Figure 1 right).

To process the example mentioned above:

(1) ReactGenie first translates the user’s voice command to the
ReactGenieDSL code. Here, the user referred to an element
on the UI by voice (“this restaurant”) and the language parser
generates a special reference Restaurant.current().

(2) ReactGenie extracts the tap point from the UI and uses the UI
component code to map the tap point back to a state object
Restaurant(name:"TacoBell").

(3) With both the parsed DSL and UI context, ReactGenie’s inter-
preter can then execute the generated ReactGenieDSL using
developer-defined states. It first retrieves the most recent
order from "Taco Bell", designated as “Taco 3/3”. Then, it
creates a new order, designated as “New Taco”. Finally, the
interpreter adds all the food items from “Taco 3/3” to “New
Taco” and returns the new order.

https://doi.org/XXXXXXX.XXXXXXX
https://jya.ng/reactgenie

ReactGenie
arXiv, ,

Figure 2: ReactGenie’s targeted interaction scenarios.

(4) ReactGenie passes the return value of the ReactGenieDSL
statement to the output UI mapping module. Because the
return value is an Order object, ReactGenie searches in the
developer’s UI component code to find a corresponding rep-
resentation (Output UI Mapping) to present the result to the
user. ReactGenie also generates a text response using the
LLM based on the user’s input, parsed ReactGenieDSL, and
the return value: “Your cart is updated with the same order
from this restaurant as the last time.”

Our main contributions to this paper are as follows:

• ReactGenie, a new multimodal app development framework
based on object-oriented state abstraction that is easy on
developers and generates apps that support complex multi-
modal interactions.

• Automatic handling of natural language understanding in
a multimodal app framework. This involves the design of
the high-level annotation of user-accessible functions, the
automatic generation of a natural language parser using
LLMs that targets ReactGenieDSL, a new DSL for complex
multimodal commands, and an interpreter that executes Re-
actGenieDSL.

• Evaluations of ReactGenie:
– We demonstrated the expressiveness of the ReactGenie
framework by building three demo apps.

– We elicited commands from crowd workers and found the
ReactGenie language parser can achieve 90% accuracy on
supported tasks for one of the example apps.

– We found in a user study (𝑁=16) that the app generated
with ReactGenie significantly reduced cognitive load and
task completion time compared to a GUI-only app.

2 RELATEDWORK
In this section, we review related work on multimodal interaction
systems, Graphical and Voice UI frameworks, and multimodal in-
teraction frameworks.

2.1 Multimodal Interaction Systems
Many researchers have proposed multimodal interaction systems.
The earliest multimodal interaction systems were developed in
the 1980s [13]. They demonstrated that users can interact with a
computer using a combination of voice and gestures. QuickSet [18]
further demonstrated use cases of multimodal interaction on a
mobile device and showed military and medical applications.

Recent work has explored different applications of multimodal
interaction, including care-taking of older adults [43, 46], photo
editing [33], and digital virtual assistants [29]. Researchers have
also explored different devices and environments for multimodal
interaction, including augmented reality [54], virtual reality [35, 51],
wearables [14], and the Internet of Things [21, 30, 50, 53].

These papers have demonstrated the great potential of multi-
modal interaction systems. However, multimodal systems still have
limited adoption in the real world due to their added development
complexity.

2.2 Graphical UI frameworks
ReactGenie is built on top of existing graphical UI frameworks to
provide a familiar development experience.

Model–view–controller (MVC) [31] is a traditional approach to
UI development, including frameworks such as Microsoft’s Win-
dows Forms [25], and Apple’s UIKit [1]. The model stores data while
the controller manages GUI input and updates the GUI based on
data changes. Typically implemented in object-oriented program-
ming languages, MVC can be compared to a shadow play, where
objects (controllers) manipulate GUIs and data to maintain synchro-
nization. However, updating the model with alternative modalities,
such as voice, is not feasible due to the strong entanglement be-
tween models and GUI updates.

Garnet [40], a user interface development environment intro-
duced in the late 1980s, is another notable approach to GUI de-
velopment. Garnet introduced concepts like data binding, which
allows the GUI to be updated automatically when the data changes.
It also tries to abstract the GUI state from the presentation using
designs like interactors [39]. While interactors allow the UI state to
be rewired and thus to be updated from another modality like voice

arXiv, ,
Jackie (Junrui) Yang, Karina Li, Daniel Wan Rosli, Shuning Zhang, Yuhan Zhang, Monica S. Lam, and James A. Landay

or gesture [32], they still lack the capability to enable manipulation
of more abstract states (like an entire query) that are not directly
mapped to a single UI control.

Declarative UI frameworks, such as React [2], Flutter [3], and
SwiftUI [6], are a more recent approach to UI development. With
declarative UI frameworks, programmers write functions to trans-
form data into UI interfaces, and the system automatically manages
updates. To ease the management of states that may be updated by
and reflected on multiple UI interfaces, centralized state manage-
ment frameworks, such as Redux [5], Flux [8], and Pinia [4], are
often used. They provide a single source of truth for the application
state and allow state updates to be reflected across all presented
UIs. This approach can be likened to an overhead projector, where
the centralized state represents the writing and the transform func-
tions represent the lens projecting the UI to the user. While this
approach improves separation and UI updating, it sacrifices the
object-oriented nature of the data model.

ReactGenie reintroduces object-orientedness to centralized state
management systems by representing the state as a sum of all
class instances in the memory. Developers can declare classes and
describe actions as member functions of the classes. ReactGenie
captures all instantiated classes and stores them in a central state.
This model can be compared to children (class instances) playing
in a playground, with views (UI components) acting as cameras
capturing different angles of the centralized state. In this way, React-
Genie enables complex action composition through type-checked
functional calls. Furthermore, developers can tag specific cameras
to point at certain objects, enabling automatic UI updates from state
changes. These features allow ReactGenie apps to easily support the
compositionality of multimodal input and enable the interleaving
of multimodal input with other graphical UI actions.

2.3 Voice UI frameworks
Commercial voice or chatbot frameworks, such as Amazon Lex,
Dialogflow, and Rasa, are designed to handle natural language
understanding and generation. They allow developers to define
intents and entities, and then train the model to recognize the
intents and entities from the user’s input. These frameworks require
complete redevelopment of the application to support voice input
only. Frameworks such as Alexa Skills Kit and Google Actions allow
developers to extend existing applications to support voice input.
However, they still require manual work to build functions only
for voice, and their UI updates are limited to simple text and a
few pre-defined UI elements. Additionally, the intent-based nature
limits the compositionality of the voice commands.

Research-focused voice/natural language frameworks, such as
Genie [16, 49] and other semantic parsers [11, 41], are designed
to support better compositionality of voice commands. However,
given that app development is primarily geared toward mobile and
graphical interfaces, these frameworks require extra work from
the developer and do not support multimodal features. ReactGenie
improves this experience by integrating the development process
of voice and graphical UIs, allowing developers to extensively reuse
existing code and support multimodal interactions.

2.4 Multimodal Interaction Frameworks
Prior work has also proposed multimodal interaction frameworks
that allow developers to build multimodal applications. One of the
earliest works is presented by Cohen et al. [17]. It includes ideas
like forming the user’s voice command as a function call and using
the user’s touch point as a parameter to the function call. Later,
researchers created standards [19, 20] and frameworks [10, 12, 28,
37, 38, 44, 45] to help developers build apps that can handle multiple
inputs across different devices. Although these frameworks provide
scaffolding for developers to build multimodal applications, they
mostly treated voice as an event source that can trigger functions
the developer has to explicitly implement for voice. Developers also
have to manually update the UI to reflect the result of the voice
command. This manual process limits voice commands to simple
single-action commands and makes it difficult for developers to
build complex multimodal applications.

Recently, there have been research papers about generating voice
commands by learning from demonstration [23, 42], extracting from
graphical user interfaces with large language models [24, 36, 48],
or building multimodal applications using existing voice skills [52].
The first approach still requires developers to manually create
demonstrations for each action and limits the compositionality
of the voice commands. The second approach is useful for accessi-
bility purposes, but it relies on the features being easily extractable
from the GUI. It is uncertain how well the first two approaches
can generalize to more complex UI tasks that require multiple UI
actions. The third approach is limited by what is provided by the
voice skills and, traditionally, these have been very limited due to
the added development effort.

In comparison, ReactGenie leverages the existing GUI devel-
opment workflow and requires only minimal annotations to the
code to generate multimodal applications. Having access to the
full object-oriented state programming codebase, ReactGenie can
handle the natural complexity of multimodal input, compose the
right series of function calls, and update the UI to reflect the result
automatically.

3 SYSTEM DESIGN
In this section, we first define the design goals of the framework.
Then, we describe the theory of operation that addresses the de-
sign goals. Finally, we discuss the implementation of the system
components and workflow.

3.1 Design goals
3.1.1 Interaction Design. ReactGenie is designed to enhance the
interaction of mobile applications. Today, mobile applications are
well-optimized for touch and graphical interactions. Users can use
the graphical interface to see content on the screen and use touch to
access actions on the screen. To further enhance the user’s perfor-
mance and reduce cognitive load, ReactGenie focuses on supporting
interactions that often involve touch actions used together with a
voice command. These interactions can be categorized into three
interaction design goals (see Figure 2):

I1 Access off-screen content: For example, the user noticed
abnormal motion on their living room security camera
footage. So they can say, “Show me the lock status history

ReactGenie
arXiv, ,

Redux’s Monolithic State Implementation ReactGenie’s Object-Oriented State Implementation

export const orderReducer = (state = {orders: []}, action: any) => {
 switch (action.type) {
 case FETCH_ORDERS:
 return {...state, orders: fetchOrdersFromServer()};
 case CREATE_ORDER:
 const newOrder = {id: state.orders.length + 1, items: []}
 return {...state,orders: [...state.orders,newOrder]};
 case ADD_FOOD_TO_ORDER:
 const {foodId} = action.payload;
 const updatedOrders = state.orders.map((order) => {
 if (order.id === state.orders.length) {
 return {...order,items: [...order.items, {id: foodId}]};
 }
 updateServer();
 return order;
 });
 return {...state,orders: updatedOrders,};
 default:
 return state;
 }
};

@GenieClass("Past order or a shopping cart")
class Order extends DataClass {
 @GenieKey()
 public orderId: string;
 @GenieProperty("Items in the order")
 public orderItems: FoodItem[];
 constructor({orderId, orderItems}: {orderId: string, orderItems:
FoodItem[]}) {
 super({orderId, orderItems}); this.orderId = orderId;
this.orderItems = orderItems;
 }
 @GenieFunction()
 All(): Order[] {
 return fetchOrdersFromServer();
 }
 @GenieFunction("Create a new order")
 static CreateOrder(): Order {
 return new Order({orderId: randomId(), orderItems: []});
 }
 @GenieFunction("Add an item to the order")
 addItem({foodItem}: {foodItem: FoodItem}) {
 this.orderItems.push(foodItem); updateServer();
 }
}

Figure 3: A comparison between state code in Redux and in ReactGenie. (Left) Part of an example state code in Redux. Data is
stored in the state variable and the state can be mutated by the actions defined. These actions do not have explicit types and
they directly manipulate the state so no return values are defined. Due to its monolithic design, it is hard to compose functions
together to achieve some multimodal actions. (Right) Part of an example state code in ReactGenie. Automatically managed by
ReactGenie, the state is composed of all the instantiated objects DataClasses. Actions in the state are defined as methods of the
class. All the methods have explicit parameter types and return types. These functions can be composed together to achieve
multimodal actions.

in the same room.” This interaction would usually require
multiple GUI navigation steps to access the content.

I2 Access off-screen actions: For example, the user says,
“Share this creator/comment” while watching a YouTube
video. Some actions are hidden behind a menu or a button,
and some are not accessible on mobile devices.

I3 Combine multiple actions/content: For example, the user
says, “Order what I ordered last time” while looking at a food
delivery app. This usually requires the user to go back and
forth between an order detail page and a menu page.

The common theme of these interactions is that they require the
multimodal interaction framework to understand the content and
actions available in the app. For the content, the framework needs to
know what the content on the screen is, how to access it, and how
to represent it to show the retrieved content. For the actions, the
framework needs to know the list of available actions and how to
reflect changes back to the user after the action is triggered. Finally,
the framework needs to understand the user’s complex intent and
potentially represent it as a series of actions and content.

With ReactGenie, apps will have a microphone button on the
screen. When the user taps on the button, the user can say their
command and refer to the content on the screen by tapping on it.
The app will then parse the voice command and touch input and
execute the corresponding actions to help the user with the types
of scenarios described above.

3.1.2 Framework Design. To understand the content, the actions,
and the user’s complex intent, ReactGenie needs to seek information
from the app’s code. However, the design goal for ReactGenie is to
do this in a way that causes minimal disruption for the application
developer.

Without a proper framework for multimodal apps, the developer
needs to design mechanisms to handle voice, deal with the com-
plexity of multimodal commands, and maintain control of the app’s
behavior. Instead, ReactGenie’s framework design goals include
handling these issues:

F1 Ease the learning curve by providing a similar program-
ming experience to existing GUI frameworks.

F2 Maximize the reuse of existing GUI code and alleviate
the developer from handling the complexity of multimodal
commands.

F3 Allow developers to have full control over the graphical
UI appearance and app behavior.

3.2 Theory of Operation
ReactGenie presents an object-oriented state programming model
to the developer. As mentioned in Section 2.2, in frameworks like
React, UI development is moving towards separating the UI from
the state, so that there is a unidirectional data flow from the state to
the UI. This trend allows ReactGenie to use multimodal commands
to change the same state and update the UI accordingly, maximizing
the reuse of existing GUI code (F2).

However, in these existing frameworks, the state is simplified to
a single data store with functional transforms (actions) on the data
store. The monolithic state makes it difficult to compose multiple
actions involving different modalities in one command (I3).

ReactGenie introduces the object-oriented programming model
to the state of a declarative UI app. The object-oriented state model
naturally separates the content and actions in the app. The content
is usually defined as properties of the state objects, and the actions
are defined as methods of the state objects.

arXiv, ,
Jackie (Junrui) Yang, Karina Li, Daniel Wan Rosli, Shuning Zhang, Yuhan Zhang, Monica S. Lam, and James A. Landay

System output

State

Component

Runtime
Transpilation & Initialization Time

State
Annotations

Component
Annotations

Language Parser

Response
Generator

Input/Output
UI Mapping

Generated Prompt

Class definition

Example parses

User input

Voice

Touch

Language Parser

ReactGenieDSL
Interpreter

Input UI Mapping

State

Content in UI Output UI Mapping

Text

Touch
Points

Referred
Instance

ReactGenieDSL

Function &
Property

Response
Generator

Feedback in
Text

Component

Return
Value

Execution
Steps

Developer’s code

@GenieClass("Email address")
class Email extends HelperClass {
 @GenieProperty("Email address")
 public email: string;
 constructor({email}: {email: string}) {
 super({email}); this.email = email;
 }
}

@GenieClass("Signature Request")
class SharedDoc extends DataClass {
 @GenieKey()
 public signatureRequestId: string;
 @GenieProperty("Recipient of the signature request")
 public recipient: Email;
 @GenieProperty("Document to be signed")
 public document: Document;

 constructor({signatureRequestId: string, recipient: Email,
document: Document}) {
 }

 @GenieFunction("Create a new shared document")
 static CreateSharedDoc({recipient: Email, document: Document}):
SharedDoc {
 return new SharedDoc();
 }
}

const EmailView =
MultiComponent((email:
Email) => {
 return
<View>{email.email}</
View>
});

const ShareDocView =
MultiComponent((sharedDoc: ShareDoc) => {
 return <View>
 <DocumentView doc={sharedDoc.document}/>
 <EmailView email={sharedDoc.email}/>
 </View>
});

const MainView = () => {
 const docs = multiSelector(()=> ShareDoc.All())
 return <View>
 {docs.map((doc)=><ShareDocView sharedDoc={doc}/>)}
 </View>
}

HelperClass

MultiComponent

DataClass

MultiComponent

OtherComponent

Figure 4: Overview of the ReactGenie system: Developers write object-oriented state code for programming content and actions
and define the UI as cascading components. ReactGenie operates at transpilation and initialization time to generate runtime
modules. Developer modules, generated modules, and ReactGenie modules come together to process complex multimodal
commands from the user. This workflow is similar to regular GUI development, maximizes code reuse, and allows full control
of the app behavior.

The developer identifies the user-accessible content and actions
with the GenieProperty and GenieFunction annotations, along
with an example of how it may be referred to in English as shown in
Figure 3 right. The GUI is defined as cascading components that are
rendered from the user-accessible state. Components are functions
that developers define, which convert data in the state to HTML,
UI elements, or a combination of other components. This allows
the internal state to be rendered to the user in a GUI. The high-
level model of ReactGenie resembles popular GUI development
frameworks (React + Redux), which makes it easy for developers to
learn and use (F1). ReactGenie automatically handles the retrieval
of content off screen (I1), the execution of actions off screen (I2),
and combinations of the two (I3).

We contrast ReactGenie’s object-oriented approach with React in
Figure 3. In React, if the user says “Add a food to a new order”, this
is implemented as a code sequence that calls the CREATE_ORDER
action, indexes into the last of the orders in the state, and calls
the ADD_FOOD_TO_ORDER action. Due to the nature of these actions,
there is no explicit connection linking them together. Whereas in
ReactGenie, each step corresponds to a method invocable by mul-
timodal input. These methods are all strictly typed, which helps
the natural language parser come up with the correct combination

of methods. The entire natural language command can be repre-
sented succinctly with a single-line command: Order.CreateOrder
().addItem(foodItem:food). This succinctness improves the ac-
curacy of the natural language parser that translates the natural
language command to this code. Furthermore, as the same content
and state are shared by the GUI and voice modality, this represen-
tation supports interchangeability in the modality of user input for
each step.

Due to the complexity of the user’s multimodal commands, we
cannot use a simple intent classifier like that used by traditional
voice assistants. Instead, we use a sequence-to-sequence neural
semantic parser to translate the user’s natural language command
into ReactGenieDSL, which is executed using the developer’s code.
We do not generate JavaScript directly, because the expressiveness
of JavaScript may cause unintended changes to the app’s behavior
(contradicting F3).

3.3 System Components
As shown in Figure 4, a ReactGenie app consists of developer-
supplied code, MultiReact-supplied runtime modules, and modules
generated from the developer’s code.

ReactGenie
arXiv, ,

3.3.1 Developer Modules. Developers provide the content and ac-
tions in an app through ReactGenie’s object-oriented state model,
implemented in TypeScript2. As with all object-oriented program-
ming models, ReactGenie’s state includes the definition of classes
and instances. Classes have methods and properties, which can be
labeled as GenieFunction and GenieProperty using annotations
to indicate that they are user-accessible via multimodal commands.
These code annotations or decorators in TypeScript are tags written
before the class, method, and property declarations. This allows
the relevant annotation code to be executed at initialization time
to transform the capabilities of the annotated classes or methods.

Class Definitions. ReactGenie provides developer-accessible
classes for developers to implement the state of their app:
DataClass and HelperClass. The former stores data of the app,
and the latter provides definitions to ease the user’s interaction
with the data. Examples of each type of class are shown in the top
left of Figure 4.

All DataClass instances need to implement two methods and
one property:

(1) constructormethod: The constructor of the class initializes
the instance with all the required data.

(2) All method: A static method that either returns a list of
instances of the class or returns a Query object that can be
used to retrieve the instances. Should be annotated with
GenieFunction.

(3) id property: A unique identifier of the instance.

With this information, ReactGenie can automatically generate two
methods for each DataClass:

(1) Get method: A static method that takes an id as input and
returns the instance in memory with the corresponding id.

(2) Current property: A static method that returns the instance
that is being referred to by the user. This is automatically
annotated with GenieProperty.

A DataClass is like a table in a database. The constructor, All, id,
and Get are basically insertion, selection, primary key, and retrieval
of a row using its primary key. ReactGenie automatically maintains
the instances of DataClass in memory to form the state of the app.
Similar to many of the common state management frameworks,
when any of the properties of a DataClass instance is changed,
UI components that refer to that property will be automatically
updated. This ensures that the UI is always in sync with what is
being represented in the state.

DataClass can be backed by a remote database, which is com-
mon in modern app development. This database is automatically
managed by ReactGenie. When the data is backed by a remote data-
base, All can be implemented as a query to the original database,
and it can instantiate the DataClass with the data retrieved from
the database when needed.

The HelperClass allows developers to define new types
that can be used in the DataClass. For example, ReactGenie
already provides a basic DateTime HelperClass that can be
used to represent a date. It can support operations like off-
setting the time by a certain amount of time or setting the

2https://www.typescriptlang.org/

year/month/day/hour/minute/second/day of the week to a cer-
tain value. It allows commands such as “last Thursday”, which
can be translated to “DateTime.Current.offset(week:-1).set
(weekOfTheDay:4)”. Other HelperClass instances can be defined
by the developer to support more complex operations such as length
unit conversion and so on. The HelperClass is only required to
have a constructormethod that takes the data as input and initial-
izes the instance. ReactGenie will also generate a Current property
for the HelperClass that returns the instance that is being referred
to by the user. ReactGenie does not keep track of the instances of
HelperClass separately in memory, but instead, they will be part
of the DataClass that uses them.

For both DataClass and HelperClass, the developer can define
a description method to customize the string representation of
the instance for response generation. By default, ReactGenie will
generate a JSON-like representation using all the properties of the
instance.

Natural language annotations. ReactGenie calls an LLM
with the functions and properties labeled GenieFunction and
GenieProperty in a format resembling a class definition to teach
the LLM the app’s functionality. If the design of the classes is un-
usual, the developer needs to define a few example commands and
the corresponding ReactGenieDSL to teach the LLM the syntax (see
Section 3.3.2).

For example, when building an example food ordering app, we
represent both the current shopping cart and previously placed or-
ders using the same Order object and distinguishing them with the
orderPlaced property. We found that the LLM cannot parse some
of the commands correctly, and we need to provide two examples
to fix the majority of parsing errors.

Graphical user interface declarations. The ReactGenie de-
veloper needs to define the GUI (as shown in the bottom left of
Figure 4) as a set of functional components3 similar to React. These
components can refer to each other to facilitate reuse. It is com-
mon for every single instance of a DataClass or HelperClass
to be represented by a component. Therefore, ReactGenie intro-
duces a special component called GenieComponent for that pur-
pose. Instead of the arbitrary parameters of a normal functional
component, GenieComponent takes a DataClass or HelperClass
instance as input. GenieComponent allows the ReactGenie runtime
to understand which component is mapped to which instance in
memory. It also allows ReactGenie to render the result of the user’s
request using the developer-defined component. While defining
GenieComponent, the developer can also specify an optional title
and priority (both can be a method of the state instance) for the
interface, which is relevant for choosing the interface to render
multimodal command responses.

3.3.2 ReactGenie Modules. The most important component of Re-
actGenie is the DSL interpreter module. It is responsible for running
the generated ReactGenieDSL code and calling the correspond-
ing methods in the developer’s state code. The ReactGenieDSL is
designed to meet these language design goals:

L1 Easy to generate: LLMs can generate syntactically correct
ReactGenieDSL code.

3https://react.dev/learn/your-first-component

https://www.typescriptlang.org/
https://react.dev/learn/your-first-component

arXiv, ,
Jackie (Junrui) Yang, Karina Li, Daniel Wan Rosli, Shuning Zhang, Yuhan Zhang, Monica S. Lam, and James A. Landay

L2 Robust to generation errors: LLMs can generate semantically
correct ReactGenieDSL code.

L3 Able to express multimodal commands: ReactGenieDSL can
express diverse multimodal commands.

Therefore, because of L1, ReactGenieDSL has to be in a form that
is similar to existing programming languages that LLMs are trained
on. To help with L2, we also want ReactGenieDSL to be strongly
typed. We tried a syntax similar to TypeScript, but we noticed
the LLM-based language parser tended to generate the correct
parameters but in the wrong order from time to time. Therefore,
we decided to use a syntax similar to Swift, which is also a strongly
typed language but requires parameter names to be specified in the
function call.

To reduce complexity (also helps with L2), we decided not to
use any lambda functions in ReactGenieDSL. To maintain expres-
siveness L3, we added a few array functions to aid basic filter-
ing (matching, between), sorting (sort), and summarization (sum,
average, count). The full grammar of ReactGenieDSL is listed in
Appendix A. We implemented the DSL interpreter module using
peggy4.

The ReactGenie framework ships with one Helperclass called
DateTime and a set of GenieComponent that can be used to repre-
sent the DateTime instance, like one that shows the data in a con-
venient “𝑛 seconds/minutes/hours/days ago” format. In the future,
ReactGenie can provide more HelperClass and GenieComponent
to support common operations. Libraries can also be built on top
of ReactGenie to provide more HelperClass and GenieComponent
for specific domains.

3.4 SystemWorkflow
Typically, a TypeScript app is transpiled to JavaScript so that it can
be run in a mobile app or in a browser. Transpilation is a source-to-
source translation process from the TypeScript that the developer
writes to Javascript that the machine executes. However, during
the transpilation process, the metadata like typing and function
parameter names are removed. The metadata lost in transpilation is
required by ReactGenie to understand the developer’s code. There-
fore, ReactGenie works by generating modules during transpilation
and at initialization time when information about the developer’s
code is still available. ReactGenie calls the generated modules dur-
ing runtime (as shown in the top right of Figure 4).

3.4.1 Transpilation and Initialization for States. We built a
custom transpiler plugin that generates extra metadata for
@GenieProperty, and @GenieFunction of DataClass and
HelperClass. During initialization of the app, ReactGenie will
load injected metadata from state classes to generate a prompt for
the LLM. LLMs work by generating text continuations given a
paragraph of previous text. The provided previous text is often
referred to as the prompt. By controlling the prompt, we change
the information that the LLM has access to and guide the LLM to
do what we want (generate the corresponding ReactGenieDSL
of the user’s command). ReactGenie’s generated prompt contains
two parts: 1) The class definitions contain all the DataClass
and HelperClass methods and properties definitions with the

4https://peggyjs.org/

implementation stripped out. It is rendered in a format similar to
Swift syntax. 2) The example parses provided by the developer are
also included as few-shot examples.

The language parser adds the user input to the generated prompt
and presents that to the LLM to translate into ReactGenieDSL. The
response generator prompts the LLM with the generated prompt,
the user input, the parsed ReactGenieDSL, and the description of
the return value from the execution of ReactGenieDSL to produce
a short text response.

We built the language parser using the OpenAI Codex model
code-davanci-2 and the response generator using the OpenAI
GPT 3.5 model text-davanci-3.

3.4.2 Transpilation and Initialization for Components. During ini-
tialization time, we also process GenieComponent functions to save
a mapping between GenieComponent and the GenieClass that
they are representing. From this information, we generate input
and output UI mapping modules. For input mapping, we monitor the
bounding box of all GenieComponents. When the user touches the
screen while expressing a multimodal command, ReactGenie will
use the bounding box information to figure out which component
the user is pointing to.

It is common for multiple UI components to cover the area
where the user taps on the screen. For example, in Figure 1, all
the FoodThumbnail components overlap with the OrderItemView
components. ReactGenie allows the user to use their voice to disam-
biguate the reference: If the user mentions food, such as “this food”
(FoodItem.Current()), or actions that can only be done with food,
like “what is the price for this” (FoodItem.Current().price), Re-
actGenie will use the FoodItem object and vice versa. In the special
case where the tapped area is covered by multiple components of
the same type, ReactGenie uses the one with the smallest bounding
box.

Another common scenario is that if one object is clearly in the
“foreground” of the graphical UI, the user may naturally refer to
it as “this” without explicitly specifying the component via touch.
So, when the user refers to a state class and either there is no
touch point or the touch point does not match any component
representing that class, ReactGenie will use the largest component
on the screen representing that class as the reference.

We also use GenieComponent to generate output UI mapping
modules.We gather all the GenieComponents with supplied priority
and title and group them by the state class they are representing.
When the result of the executed ReactGenieDSL is a state class
instance, ReactGenie enumerates through all the GenieComponents
representing that class and renders the one with the highest priority.

There are two types of execution results. The first type is that the
translated ReactGenieDSL returns an instance that can be rendered
by a GenieComponent. This is common when the user asks to either
retrieve some data “what are my most recent orders from this
restaurant” or to perform some action with a clear result “create
an empty cart”. In that case, it would be intuitive to render the
result on the screen directly. So, when the return value can be
represented by a GenieComponent, ReactGenie will always find the
highest priority GenieComponent and render it.

https://peggyjs.org/

ReactGenie
arXiv, ,

ReactGenieFoodOrdering ReactGenieSocial ReactGenieSign

ReactGenieSign - NDA Management

Figure 5: Example apps built with ReactGenie. Left: ReactGenieFoodOrdering, a food ordering app. Middle: ReactGenieSocial,
a social networking app. Right: ReactGenieSign, a business for distributing NDAs.

The second type is that the translated ReactGenieDSL returns
a value that cannot be rendered by a GenieComponent. For ex-
ample, if the user asks to “add a hamburger to the cart” (Re-
actGenieDSL: Order.GetActiveCart().addItem([Food.Named
("hamburger")]), it would return void which cannot be rendered.
For these actions, the return value is less important and the user is
more interested in the side effect of the action, so we can provide
confirmation via text feedback. In the case when the user is already
on a restaurant page where they can see an indicator of the number
of items in the cart (the counter as a component would also repre-
sent the cart instance), it would be redundant to show the cart again.
However, if the user is on the past order page where they cannot
see any representation of the cart, it would be useful to show the
cart to make sure the user understands the action being performed.
In that case, ReactGenie will automatically check the execution
history and find the last readable result is Order.GetActiveCart
(). ReactGenie will also check all the currently shown components
(in a similar way as how the input UI mapping works) to see if
there is any component representing the same instance. ReactGe-
nie would only render this result if the current page does not have
any component representing the same instance.

3.4.3 Runtime. Similar to normal React or React-Native apps, when
users interact with buttons and visual controls in the app, the
app calls the corresponding methods to update data in the state
instances. In turn, the state instances trigger the GenieComponents
to update their UI.

As shown in the bottom right of Figure 4, the multimodal in-
teractions are handled through developer modules (Section 3.3.1),
the ReactGenie modules (Section 3.3.2), and the generated modules
(Section 3.4.1) collectively. When the user touches the microphone
button on the UI, ReactGenie starts listening to the user’s voice
command and intercepts all touch events on the screen. From this,
we gather two inputs: the user’s voice command and the touch
point(s). We use speech recognition from Azure to transcribe the
user’s speech to text. The voice command transcript then is passed
to the language parser module to generate the ReactGenieDSL code.
The touch point(s) are passed to the input UI mapping module
to figure out which component and state instance the user can be
referring to. Both pieces of information are then passed to the React-
GenieDSL interpreter to execute the ReactGenieDSL code with the
corresponding relevant state instance. ReactGenie uses the methods
and properties of the developer-provided state classes to execute
the ReactGenieDSL code. After the execution, we record both the
final return value and the intermediate values during execution.
ReactGenie uses the return value and the parsed DSL to generate a
text response using the response generator. ReactGenie also passes
execution steps to the output UI mapping module to figure out
whether and how to render the result on the screen. Finally, the
text response and the rendered UI are used to generate Feedback in
Text and Content in UI.

arXiv, ,
Jackie (Junrui) Yang, Karina Li, Daniel Wan Rosli, Shuning Zhang, Yuhan Zhang, Monica S. Lam, and James A. Landay

App Name FoodOrdering Social Sign

DataClass Order, FoodItem, Restaurant Post, User, Message User, Document, SignatureRequest
HelperClass OrderItem EmailAddress
GenieComponent 11 7 6
OtherComponents 8 2 3
GenieFunction 22 8 11
GenieProperty 18 10 16
State Code (lines) 835 449 421
Component Code (lines) 1854 585 446
Examples (count) 11 6 6

Table 1: Implementation statistics of demo apps. We listed all the DataClass, HelperClass, and the number of GenieComponent
and GenieFunction used in the apps. We also listed the number of lines of code for the state and component code and the
number of example parses provided for the voice parser.

4 EVALUATION
We first followed the guidelines of Ledo et al. [34] to evaluate
ReactGenie as a toolkit through demonstration and technical per-
formance. We demonstrate the expressiveness and usefulness of the
ReactGenie framework by building three demo apps. We analyze
the number of annotations and examples needed when building the
demo apps to show that the cost of building multimodal support is
low. We also analyze the technical performance of the ReactGenie
system by measuring the accuracy of the language parser through
an elicitation study. We then verified our demo apps are effective
through a lab-based usability study with the demo food ordering
app. Our results showed the multimodal version of the app signifi-
cantly improved the user experience over the GUI-only version in
various aspects.

4.1 Example Apps
We built three example apps across three major categories of apps:
food & drink, social networking, and business, as shown in Figure 5.
The implementation statistics are shown in Table 1.

4.1.1 ReactGenieFoodOrdering. ReactGenieFoodOrdering is a food
ordering app that allows users to order food from a restaurant. It
has the basic functions of browsing menus, shopping cart manage-
ment, and checking order history. In total, the app is composed
of around 2689 lines of code, only 88 (3%) of which are related to
building multimodal UIs. Note that every example parse provided
by the developer takes four lines of code and every GenieClass,
GenieFunction, and GenieProperty annotation takes just one line
of code.

4.1.2 ReactGenieSocial. ReactGenieSocial is a social networking
app that allows users to post pictures, comment on pictures, and
share pictures with friends. It has the basic functionalities of brows-
ing posts, interacting with posts, and sharing posts. In total, the
app is composed of around 1034 lines of code, only 49 (5%) of which
are related to building multimodal UIs.

4.1.3 ReactGenieSign. ReactGenieSign is a business app that man-
ages NDAs and contracts. It has the basic functionalities of creating
documents, sharing documents for signing, and user management.

In total, the app is composed of around 867 lines of code, only 51
(6%) of which are related to building multimodal UIs.

4.1.4 Summary. These demo apps showed that when building a
typical app with ReactGenie, only a small fraction (5% on average)
of the code has to be written to handle multimodal interactions.
This is particularly impressive since defining multimodal interac-
tion can be intricate and typically requires a substantial amount of
code to support. While building these demo apps, we also noticed
that most UIs are naturally decomposed into components that rep-
resent different ReactGenie state instances, which made it easy to
decompose the UI into GenieComponents.

4.2 Elicitation Study
To understand how well the ReactGenie parser works with in-
formation extracted from the developer’s code, we elicited com-
mands from crowd workers for the ReactGenieFoodOrdering app
and tested our parser. Specifically, we would like to know:

(1) RQ1: What percentage of the commands 1) are achievable
with a single UI interaction on screen, 2) fall into the three
targeted interactions mentioned in Section 3.1, or 3) are out
of scope of ReactGenie.

(2) RQ2: How accurate the parser is when parsing commands
in the targeted interactions.

4.2.1 Elicitation. We would like to get multimodal commands that
users may use in a real-world scenario.We adopted a similar method
as described as Cloudlicit [9]. We provided the user with three
screenshots (restaurant listing page, restaurant menu page, and
past orders page) of the two most popular food ordering apps in
the US: DoorDash and UberEats. In our pilot study, we found that
many participants thoughts on what they can do were limited
to what’s on-screen and what they think the current generation
of voice assistants can do. Therefore, we showed the final study
participants 12 videos in a random order, containing 4 videos for
each of the three categories of interactions. Among these 12 videos,
we also made sure half of them involve only voice and the other
half contained voice and touch.

We recruited 50 participants from Prolific, a crowdsourcing plat-
form. We used the balanced sample options when finding partici-
pants, so we had 25 female and 25 male participants. The age range

ReactGenie
arXiv, ,

of the participants was 20 to 79, with a median age of 29. The survey
took approximately five minutes to complete and we paid $2 for
each participant.

From these 50 participants, we got 300 commands. We filtered
out 12 responses that were unclear or not related to the survey.
For example, one participant wrote “various good foods to order or
view that can be good” as a command. After filtering, we have 288
commands in the dataset.

4.2.2 RQ1: Percentages of categories of commands. We classify the
commands into three categories:

(1) Simple UI interaction: The command can be achieved with
a single UI interaction on screen. For example, “Look at Curry
Up Now Menu” when the restaurant is visible on screen.

(2) Within the three targeted interaction categories: The
command falls into the three targeted interactionsmentioned
in Section 3.1. For example, one participant filled “Order
me two big macs and large fries from Mcdonald’s for pickup.”
With a GUI, this command would typically be achieved via
multiple taps to add the foods and configure the delivery
options.

(3) Out of scope of ReactGenie: The command is out of scope
of ReactGenie. For example, “How do I repeat past orders?”.
ReactGenie tries to help people complete complex tasks, but
it does not have built-in knowledge about how to use the UI
of the app.

Two researchers collaboratively labeled 30 commands to get a
rubric for the rest of the commands. We then labeled the rest of the
commands (258 commands) using the rubric separately. Both label-
ers labeled the same label for 224 commands and different labels
for 34 commands. Because the labels have a skewed distribution,
we used Gwet’s AC1 [26] to measure the inter-rater reliability. The
AC1 score is 0.83, which means the labels are highly consistent. We
resolved the disagreement and got a final label for each command.

From this analysis, we found that 100 of the elicited commands
were simple UI interactions, 172 commands fall into the three tar-
geted interactions, and 16 commands were out of the scope of
ReactGenie.

This shows that users can come upwith tasks that are beyond just
simple UI interactions even when the type of multimodal interfaces
that ReactGenie supports are not available in commercial apps. It
may also hint at user interest in the types of interactions that we
propose here.

4.2.3 RQ2: Accuracy of the parser. We tested the parser on the 172
commands that fall into the three targeted interactions. We ran
the parser based on the ReactGenieFoodOrdering app and read the
generated ReactGenieDSL to see if the parses are correct. While
working on labeling the correctness, we also noticed that many
of the commands are not supported by our simple demo app, e.g.,
ReactGenieFoodOrdering only knows delivery fees for different
restaurants, but not estimated delivery times. So we also labeled
whether the feature that the command is trying to use is supported
by ReactGenieFoodOrdering.

Our analysis showed that 101 commands are supported by Re-
actGenieFoodOrdering and 71 commands are not supported. Some

features that are missing from ReactGenieFoodOrdering are 1) top-
pings/customization of a food item; 2) reviews of a restaurant or a
food item; 3) delivery time estimates for restaurants.

From the 101 commands that are supported by ReactGe-
nieFoodOrdering, we found that 91 commands are parsed correctly
by the parser, and 10 commands are not parsed correctly. Therefore,
on this dataset, the parser has an accuracy of 90%.

We also looked at the 71 commands that are not supported
by ReactGenieFoodOrdering. These commands mention fea-
tures that are not in the ReactGenieFoodOrdering app. To our
surprise, the parser also generated sensible ReactGenieDSL
for the majority (38) of these commands. ReactGenie parser
approximates the request command with available features
in the app for 24 of these commands. For example, React-
Genie parser generates Restaurant.GetRestaurant(name
:"pizzahut").getFoodItems().between(field:.price,from
:0,to:5) for the command “What deals does pizza hut have?”. In
this case, the parser approximates deals with food items that are less
than 5 USD. For 14 commands, the parser would generate function
calls and property accesses that are not supported by the app. For
example, the parser parsers “What time does Chipotle open?” to
Restaurant.GetRestaurant(name:"Chipotle").openingTime.
In this case, ReactGenieFoodOrdering does not have the property
openingTime for restaurants, but the parser is still capable enough
to generate a sensible ReactGenieDSL. In the future, the ReactGenie
runtime can leverage this information to inform the user of the
missing property and potentially even suggest the developer add
common missing features to the app.

There are 33 unsupported commands that are not parsed cor-
rectly by the parser. Some of them are due to the parser generat-
ing ungrammatical ReactGenieDSL and others use incorrect prop-
erties and methods. For example, the parser parses “Find restau-
rants that deliver in less than 25 minutes.” to Restaurant.All
().matching(field:.deliveryFee,value:<25). In this case, Re-
actGenieFoodOrdering does not know the estimated delivery time
of restaurants, but the correct parsing should be Restaurant.All
().between(field:.deliveryTime,from:0,to:25).

The results show that ReactGenie parser is a reasonably good
implementation for parsing natural language commands to React-
GenieDSL using only information extracted from the shared logic
code and the few-shot examples provided by the developer.

Another interesting metric is that 104 of the 172 commands
contain at least one touch point, but there are only 18 cases where
these touch points are required to execute the command. In many of
these commands, the user taps relevant objects, hoping that it would
help the system understand. For example, they would tap on the
“Restaurant” menu bar while saying “Show me a pizza restaurant
nearme.” Another interesting observation is that when they referred
to objects on screen, they often would not use a reference term like
“this” or “that.” Instead of saying “Reorder this order”, the participant
would say “Reorder my Mendocino Farms order from Thursday.” This
shows a potential opportunity to improve the language parser by
always adding the touch context even when it seems unnecessary.

arXiv, ,
Jackie (Junrui) Yang, Karina Li, Daniel Wan Rosli, Shuning Zhang, Yuhan Zhang, Monica S. Lam, and James A. Landay

Average Temporal Demand Frustration Mental Demand Effort Physical Demand Performance

0

20

40

60

80

100

S
co

re

*

TLX Scores,
the lower the better

Condition
GUI-only
ReactGenie

Total

0

20

40

60

80

100

*

SUS Scores,
the higher the better

Figure 6: Cognitive load (left) and usability (right) of the GUI vs. the multimodal UI.

4.3 Usability Study with Prototype Applications
We conducted a usability study with the ReactGenieFoodOrdering
app to understand if the generated multimodal UIs are useful for
end users. We measured the performance of the multimodal UIs
in terms of the time it takes to complete a task, the cognitive load,
and the usability of the experience when using the app compared
to the same app limited to using only the GUI.

4.3.1 Study Design. In the study, we asked participants to complete
a set of tasks using two variants of the ReactGenieFoodOrdering
app, one generated by ReactGenie and one limited to only the GUI.
We used a within-subject design, where each participant completed
the same tasks using both variants of the app. For each variant of
the app, we first teach the participant how to use the app using
one example task, then we ask them to complete two test tasks
with the variant. After completing the two tasks, we asked them
to complete a survey about their cognitive load using the system
(using NASA-TLX [27]) and the usability of the experience (using
SUS [7]). At the end of the study, we asked the participants about
their subjective preferences between the two variants of the app
and their reasons for their preferences.

We designed one training task and two test tasks for each variant
of the app. The training tasks are to order the cheapest food item
from the menu of two different restaurants. The test tasks are re-
ordering an order from two different days (today or yesterday), and
finding the most recent order containing two different items. When
presenting these tasks, we described a scenario, what we want them
to do, and what’s the expected outcome (order placed screen or a
certain screen showing a past history order). We counterbalanced
the order of the two apps and the order of the three pairs of tasks.

4.3.2 Participants. We recruited 16 participants, aged 18–30, with
a median age of 23. Eight of our participants are female, six are male,
one stated other, and one prefers not to say. One of our participants

GUI-only ReactGenie
Condition

20

40

60

80

100

120

Ti
m

e
(s

ec
on

ds
)

Experiment Time Comparison between MMI and GUI

Figure 7: Time it takes to complete each task using the graphi-
cal UI and themultimodal UI (average across all participants).

uses food ordering daily, two use it weekly, five use it monthly,
seven use it a few times per year, and one rarely to never uses it.
All of our participants use graphical mobile interfaces daily. Two
of our participants use voice interfaces daily, four use them weekly,
two use them monthly, four use them a few times per year, and
four rarely to never use them. The study took about 30 minutes
to complete, and we compensated each participant with a 15 USD
Amazon gift card for their time.

ReactGenie
arXiv, ,

4.3.3 Result. We computed the time it takes to complete each task
using the graphical UI and the multimodal UI (see Figure 7). The
average time it takes to complete both tasks using the graphical UI is
63.6 seconds, while the average time it takes to complete a task using
the multimodal UI is 33.6 seconds. We used a paired t-test and found
that the difference is statistically significant (𝑝 = 0.0004, 𝑡 = 3.955).

We compared NASA-TLX average scores between the two condi-
tions (see Figure 6 left). The average NASA-TLX score for the graphi-
cal UI is 34.5, while the average NASA-TLX score for the multimodal
UI is 24.6 (note: lower is better). We used a Wilcoxon test and found
that the difference is statistically significant (𝑝 = 0.013, 𝑧 = 21).

We compared the average SUS scores between the two conditions
(see Figure 6 right). The average SUS score for the graphical UI is
63.3, while the average SUS score for the multimodal UI is 73.0
(note: higher is better). We used a Wilcoxon test and found that the
difference is statistically significant (𝑝 = 0.031, 𝑧 = 22).

11 out of 16 of our participants preferred the ReactGenie generated
multimodal UI over the graphical UI. For people who preferred the
multimodal UI, the most common reason was that it was easier to
use (P4, P8, P13, P16). P2 mentioned that they would prefer to use a
mix of both in the real world, which is well supported by ReactGenie.
P6 mentioned that the multimodal UI could be especially useful
when they are unfamiliar with the app. P12 mentioned that the
multimodal commands allowed them to do more complex tasks
with a clear path rather than searching and finding out how in the
graphical UI. For people who preferred the graphical UI, the most
common reason was that the speech recognition was not accurate
(P5, P7, P14). P9 and P11 mentioned that they generally do not use
voice interfaces.

4.3.4 Discussion. The results of our usability study show that the
multimodal UIs generated by ReactGenie are more efficient, have
a lower cognitive load, and have higher usability compared to the
graphical UIs. These findings suggest that the ReactGenie system
is successful in generating multimodal UIs that enhance the user
experience, making it easier and more efficient for users to complete
tasks. The combination of graphical and voice interfaces allows
users to take advantage of the strengths of each modality, resulting
in a more streamlined and enjoyable experience.

5 DISCUSSION
In this section, we will discuss the limitations, future work, safety,
and implications of ReactGenie.

5.1 Limitations and Future Work
ReactGenie is the first attempt at integrating multimodal develop-
ment into the declarative GUI development process. It provides
a familiar workflow, allows reuse of state code and UI, and can
understand complex multimodal commands. However, it is far from
perfect. There are two directions that future work can improve on:
1) better voice interfaces and 2) better developer support.

5.1.1 Better Voice Interfaces. ReactGenie accepts the user’s voice
input and generates text and GUI output based on the result. We
currently provide text but not voice feedback, which is easy to
change by using a commercial text-to-speech module. However,

what can be an area of improvement is maintaining natural lan-
guage context. For example, if the user says, “What is the best
pizza restaurant?” and then asks, “What about Chinese food?”
the system should be able to understand that the user is asking
about the best Chinese food instead of any Chinese food restau-
rant. Note that ReactGenie can actually handle some conversations
gracefully by using the current UI context as the context for the
next command. An example would be the user saying, “Find me
the cheapest hamburger at McDonald’s” and then asks, “Order
one of that” (ReactGenieDSLOrder.GetActiveCart().addItems
([FoodItem.Current()])). ReactGenie would present the food
item after the first command and when the user says the second
command, ReactGenie would know that the user is referring to the
food item presented in the UI.

Another way to improve the reliability of the generated inter-
faces is to better leverage multimodal commands for disambigua-
tion. As shown in Section 4.2.3, many of our elicited commands
include redundant information from voice and the GUI. Future
work can leverage this redundancy and provide extra GUI context
to the language parser to further push the parser’s accuracy closer
to 100%.

5.1.2 Better Developer Support. Although ReactGenie provides a
customizable and easy way of programmingmultimodal apps, it can
still be improved. One area that we see as a potential improvement is
to reduce the number of examples necessary and to also increase the
effectiveness of the examples. The majority of these examples are
there for teaching the parser how to generate syntactically correct
ReactGenieDSL code. However, given we have the interpreter, we
can potentially use it as an example generator to teach the parser
how to generate syntactically correct ReactGenieDSL code, similar
to the method used in SEMPRE [11] or Genie [16]. Another route
is to fine-tune the Codex model with the ReactGenieDSL code
generated by the interpreter so that the interpreter can generate
syntactically correct ReactGenieDSL code with fewer examples.

Future extensions to the ReactGenie framework can also help
developers to identify potential voice commands that the user may
want to say. Using ReactGenieFoodOrdering as an example, its API
only supports 59% of the commands that we elicited from crowd
workers. Some top categories of unimplemented commands are
about delivery time (mentioned in 8 commands), food customization
options (8), discount/deal information (7), pickup/delivery support
of restaurants (6), food types (e.g., vegetarian or vegan) (6), and
calorie/health/allergy information (6). If we can implement these
commands, we can potentially reduce the number of unsupported
commands by more than 50%. Future work can consider embedding
elicitation studies directly into the app development cycle, or the
framework could record unsupported commands from actual users
and use this data as feedback to the development team to help
improve the system.

5.2 Safety and Implications
ReactGenie uses a machine learning model to understand the users’
commands. This may bring safety issues when the wrong command
is interpreted and executed. This risk can be reduced by having a
more accurate language parser, and ReactGenie already has rela-
tively high accuracy.

arXiv, ,
Jackie (Junrui) Yang, Karina Li, Daniel Wan Rosli, Shuning Zhang, Yuhan Zhang, Monica S. Lam, and James A. Landay

Also, compared with an end-to-end natural language assistant
like ChatGPT5, ReactGenie allows more control over the presented
information and performed actions. ReactGenie will only present
information that exists in the app and will not hallucinate informa-
tion. One particular case of error is when the user asks for delivery
time but because the app does not support delivery time estimation,
ReactGenie returns the delivery fee instead. In this case, the text
feedback mechanism can be used to inform the user of the infor-
mation that is actually returned. In the future, an error correction
mechanism would be useful for the user to report the error and the
developer to fix it.

For performed actions, ReactGenie gives text feedback and ren-
ders the related UI elements to ensure the user is aware of the
command that is being executed, so when there is an error, the user
can easily identify and recover from it. A design decision we made
while creating the three demo apps is not to expose non-recoverable
actions to voice. For example, in the ReactGenieFoodOrdering app,
the user can browse items, add items to the cart, and go to the
checkout page via voice, but placing the order will only present
the checkout page and require the user to click the “Place Order”
button to place the order. This way, the irreversible action is only
triggered through GUI where there is little room for error.

Another implication of ReactGenie is the possible social impli-
cations of multimodal interaction. ReactGenie encourages users
to use voice and touch to quickly achieve their goals without the
need to go through multiple UI actions and exploration steps. The
benefit of ReactGenie comes from the expressiveness of voice and
touch, but voice interfaces may not always be appropriate. One
possibility is to explore silent voice interfaces like those presented
by Denby et al. [22] that can be used in public spaces.

6 CONCLUSION
Commercial user interfaces have stagnated with the same mobile
GUI for the past decade. Although these GUIs work well for commu-
nicating exact information (e.g., from a menu) and binary actions
(e.g., using a button), they are not expressive enough to commu-
nicate and collect complex information such as the way a waiter
or waitress can obtain a person’s order from a restaurant menu.
ReactGenie attempts to break that UI stagnation by allowing devel-
opers to create multimodal UIs that allow for more expressiveness
than traditional GUIs, with little additional programming effort.
ReactGenie accomplishes this by introducing a new object-oriented
state programming framework coupled with a powerful natural
language understanding module that leverages the capabilities of
LLMs. In this paper, we demonstrated the expressiveness, useful-
ness, and accuracy of the ReactGenie framework. In the future,
through the introduction of developer tools based on frameworks
like ReactGenie, and the research on multimodal interaction these
tools enable, we hope to see humans communicating with comput-
ers more expressively and more easily.

ACKNOWLEDGMENTS
We thank the reviewers and the participants in our user studies
for their feedback. We also thank Tianshi Li for her feedback on
writing and building early prototypes of the system.
5https://openai.com/blog/chatgpt/

REFERENCES
[1] [n. d.]. About App Development with UIKit. https://developer.apple.com/

documentation/uikit/about_app_development_with_uikit. Accessed on 2023-04-
05.

[2] [n. d.]. Describing the UI. https://react.dev/learn/describing-the-ui. Accessed on
2023-04-05.

[3] [n. d.]. Introduction to declarative UI. https://docs.flutter.dev/get-started/flutter-
for/declarative. Accessed on 2023-04-05.

[4] [n. d.]. Pinia | The intuitive store for Vue.js. https://pinia.vuejs.org/. (Accessed
on 04/05/2023).

[5] [n. d.]. Redux - A predictable state container for JavaScript apps. | Redux. https:
//redux.js.org/. (Accessed on 04/04/2023).

[6] [n. d.]. SwiftUI. https://developer.apple.com/xcode/swiftui/. Accessed on 2023-
04-05.

[7] 1996. SUS: A 'Quick and Dirty' Usability Scale. In Usability Evaluation In Industry.
CRC Press, 207–212. https://doi.org/10.1201/9781498710411-35

[8] 2023. GitHub - facebookarchive/flux: Application Architecture for Building User
Interfaces. https://github.com/facebookarchive/flux. (Accessed on 04/04/2023).

[9] Abdullah X. Ali, Meredith RingelMorris, and JacobO.Wobbrock. 2019. Crowdlicit:
A System for Conducting Distributed End-User Elicitation and Identification
Studies. In Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems. ACM. https://doi.org/10.1145/3290605.3300485

[10] Sean Andrist, Dan Bohus, Ashley Feniello, and Nick Saw. 2022. Developing
Mixed Reality Applications with Platform for Situated Intelligence. In 2022 IEEE
Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops
(VRW). IEEE. https://doi.org/10.1109/vrw55335.2022.00018

[11] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013. Semantic
Parsing on Freebase from Question-Answer Pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing, EMNLP 2013,
18-21 October 2013, Grand Hyatt Seattle, Seattle, Washington, USA, A meeting of
SIGDAT, a Special Interest Group of the ACL. ACL, 1533–1544. https://aclanthology.
org/D13-1160/

[12] Dan Bohus, Sean Andrist, Ashley Feniello, Nick Saw, Mihai Jalobeanu, Patrick
Sweeney, Anne Loomis Thompson, and Eric Horvitz. 2021. Platform for Situated
Intelligence. https://doi.org/10.48550/ARXIV.2103.15975

[13] Richard A. Bolt. 1980. “Put-that-there”: Voice and gesture at the graphics interface.
In Proceedings of the 7th annual conference on Computer graphics and interactive
techniques - SIGGRAPH '80. ACM Press. https://doi.org/10.1145/800250.807503

[14] Stephen Brewster, Joanna Lumsden, Marek Bell, Malcolm Hall, and Stuart Tasker.
2003. Multimodal 'eyes-free' interaction techniques for wearable devices. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM. https://doi.org/10.1145/642611.642694

[15] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
https://doi.org/10.48550/ARXIV.2005.14165

[16] Giovanni Campagna, Silei Xu, MehradMoradshahi, Richard Socher, andMonica S.
Lam. 2019. Genie: a generator of natural language semantic parsers for virtual
assistant commands. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation. ACM. https://doi.org/10.
1145/3314221.3314594

[17] P. Cohen, D. McGee, S. Oviatt, L. Wu, J. Clow, R. King, S. Julier, and L. Rosenblum.
1999. Multimodal interaction for 2D and 3D environments [virtual reality]. IEEE
Computer Graphics and Applications 19, 4 (1999), 10–13. https://doi.org/10.1109/
38.773958

[18] Philip R. Cohen, Michael Johnston, David McGee, Sharon Oviatt, Jay Pittman, Ira
Smith, Liang Chen, and Josh Clow. 1997. QuickSet: multimodal interaction for
distributed applications. In Proceedings of the fifth ACM international conference
on Multimedia - MULTIMEDIA '97. ACM Press. https://doi.org/10.1145/266180.
266328

[19] Deborah Dahl, Paolo Baggia, and Ken Rehor. 2003. Multimodal Architecture and
Interfaces. Technical Report NOTE-mmi-arch-20031020. W3C. https://www.w3.
org/TR/mmi-arch/

[20] Deborah A. Dahl. 2013. TheW3Cmultimodal architecture and interfaces standard.
Journal on Multimodal User Interfaces 7, 3 (apr 2013), 171–182. https://doi.org/10.
1007/s12193-013-0120-5

[21] Adrian A. de Freitas, Michael Nebeling, Xiang 'Anthony' Chen, Junrui Yang,
Akshaye Shreenithi Kirupa Karthikeyan Ranithangam, and Anind K. Dey. 2016.
Snap-To-It: A User-Inspired Platform for Opportunistic Device Interactions. In
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems.
ACM. https://doi.org/10.1145/2858036.2858177

[22] B. Denby, T. Schultz, K. Honda, T. Hueber, J.M. Gilbert, and J.S. Brumberg. 2010.
Silent speech interfaces. Speech Communication 52, 4 (April 2010), 270–287.

https://openai.com/blog/chatgpt/
https://developer.apple.com/documentation/uikit/about_app_development_with_uikit
https://developer.apple.com/documentation/uikit/about_app_development_with_uikit
https://react.dev/learn/describing-the-ui
https://docs.flutter.dev/get-started/flutter-for/declarative
https://docs.flutter.dev/get-started/flutter-for/declarative
https://pinia.vuejs.org/
https://redux.js.org/
https://redux.js.org/
https://developer.apple.com/xcode/swiftui/
https://doi.org/10.1201/9781498710411-35
https://github.com/facebookarchive/flux
https://doi.org/10.1145/3290605.3300485
https://doi.org/10.1109/vrw55335.2022.00018
https://aclanthology.org/D13-1160/
https://aclanthology.org/D13-1160/
https://doi.org/10.48550/ARXIV.2103.15975
https://doi.org/10.1145/800250.807503
https://doi.org/10.1145/642611.642694
https://doi.org/10.48550/ARXIV.2005.14165
https://doi.org/10.1145/3314221.3314594
https://doi.org/10.1145/3314221.3314594
https://doi.org/10.1109/38.773958
https://doi.org/10.1109/38.773958
https://doi.org/10.1145/266180.266328
https://doi.org/10.1145/266180.266328
https://www.w3.org/TR/mmi-arch/
https://www.w3.org/TR/mmi-arch/
https://doi.org/10.1007/s12193-013-0120-5
https://doi.org/10.1007/s12193-013-0120-5
https://doi.org/10.1145/2858036.2858177

ReactGenie
arXiv, ,

https://doi.org/10.1016/j.specom.2009.08.002
[23] Michael H. Fischer, Giovanni Campagna, Euirim Choi, and Monica S. Lam. 2021.

DIY assistant: a multi-modal end-user programmable virtual assistant. In Proceed-
ings of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation. ACM. https://doi.org/10.1145/3453483.3454046

[24] Divyansh Garg. 2023. Multi on. https://multion.ai/
[25] Andy (Steve) De George and Alex Buck2. 2023. What is windows forms - win-

dows forms .NET. https://learn.microsoft.com/en-us/dotnet/desktop/winforms/
overview/?view=netdesktop-7.0

[26] Kilem Li Gwet. 2008. Computing inter-rater reliability and its variance in the
presence of high agreement. Brit. J. Math. Statist. Psych. 61, 1 (may 2008), 29–48.
https://doi.org/10.1348/000711006x126600

[27] Sandra G. Hart. 2006. Nasa-Task Load Index (NASA-TLX); 20 Years Later. Pro-
ceedings of the Human Factors and Ergonomics Society Annual Meeting 50, 9 (oct
2006), 904–908. https://doi.org/10.1177/154193120605000909

[28] Lode Hoste, Bruno Dumas, and Beat Signer. 2011. Mudra: a unified multimodal
interaction framework. In Proceedings of the 13th international conference on
multimodal interfaces. ACM. https://doi.org/10.1145/2070481.2070500

[29] Michael Johnston, John Chen, Patrick Ehlen, Hyuckchul Jung, Jay Lieske, Aarthi
Reddy, Ethan Selfridge, Svetlana Stoyanchev, Brant Vasilieff, and JayWilpon. 2014.
MVA: TheMultimodal Virtual Assistant. In Proceedings of the 15th Annual Meeting
of the Special Interest Group on Discourse and Dialogue (SIGDIAL). Association for
Computational Linguistics. https://doi.org/10.3115/v1/w14-4335

[30] Runchang Kang, Anhong Guo, Gierad Laput, Yang Li, and Xiang 'Anthony' Chen.
2019. Minuet: Multimodal Interaction with an Internet of Things. In Symposium
on Spatial User Interaction. ACM. https://doi.org/10.1145/3357251.3357581

[31] Glenn E. Krasner and Stephen T. Pope. 1988. A Cookbook for Using the Model-
View Controller User Interface Paradigm in Smalltalk-80. J. Object Oriented
Program. 1, 3 (aug 1988), 26–49.

[32] James A. Landay and Brad A. Myers. 1993. Extending an existing user interface
toolkit to support gesture recognition. In INTERACT '93 and CHI '93 conference
companion on Human factors in computing systems - CHI '93. ACM Press. https:
//doi.org/10.1145/259964.260123

[33] Gierad P. Laput, Mira Dontcheva, Gregg Wilensky, Walter Chang, Aseem Agar-
wala, Jason Linder, and Eytan Adar. 2013. PixelTone: a multimodal interface
for image editing. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM. https://doi.org/10.1145/2470654.2481301

[34] David Ledo, Steven Houben, Jo Vermeulen, Nicolai Marquardt, Lora Oehlberg,
and Saul Greenberg. 2018. Evaluation Strategies for HCI Toolkit Research. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
ACM. https://doi.org/10.1145/3173574.3173610

[35] Minkyung Lee and Mark Billinghurst. 2008. A Wizard of Oz study for an AR mul-
timodal interface. In Proceedings of the 10th international conference onMultimodal
interfaces. ACM. https://doi.org/10.1145/1452392.1452444

[36] Toby Jia-Jun Li and Oriana Riva. 2018. Kite: Building Conversational Bots from
Mobile Apps. In Proceedings of the 16th Annual International Conference on Mo-
bile Systems, Applications, and Services. ACM. https://doi.org/10.1145/3210240.
3210339

[37] David L. Martin, Adam J. Cheyer, and Douglas B. Moran. 1999. The open
agent architecture: A framework for building distributed software systems. Ap-
plied Artificial Intelligence 13, 1-2 (jan 1999), 91–128. https://doi.org/10.1080/
088395199117504

[38] Marilyn RoseMcGee-Lennon, Andrew Ramsay, DavidMcGookin, and Philip Gray.
2009. User evaluation of OIDE: a rapid prototyping platform for multimodal
interaction. In Proceedings of the 1st ACM SIGCHI symposium on Engineering
interactive computing systems. ACM. https://doi.org/10.1145/1570433.1570476

[39] Brad A. Myers. 1990. A new model for handling input. ACM Transactions on
Information Systems 8, 3 (July 1990), 289–320. https://doi.org/10.1145/98188.98204

[40] Brad A. Myers, Dario Giuse, AndrewMickish, Brad Vander Zanden, David Kosbie,
Richard McDaniel, James Landay, Matthews Golderg, and Rajan Pathasarathy.
1994. The garnet user interface development environment. In Conference com-
panion on Human factors in computing systems - CHI '94. ACM Press. https:
//doi.org/10.1145/259963.260472

[41] Siva Reddy, Mirella Lapata, and Mark Steedman. 2014. Large-scale Semantic
Parsing without Question-Answer Pairs. Transactions of the Association for
Computational Linguistics 2 (dec 2014), 377–392. https://doi.org/10.1162/tacl_a_
00190

[42] Ritam Jyoti Sarmah, Yunpeng Ding, Di Wang, Cheuk Yin Phipson Lee, Toby Jia-
Jun Li, and Xiang 'Anthony' Chen. 2020. Geno: A Developer Tool for Authoring
Multimodal Interaction on Existing Web Applications. In Proceedings of the 33rd
Annual ACM Symposium on User Interface Software and Technology. ACM. https:
//doi.org/10.1145/3379337.3415848

[43] Gianluca Schiavo, Ornella Mich, Michela Ferron, and Nadia Mana. 2020. Trade-
offs in the design of multimodal interaction for older adults. Behaviour & Infor-
mation Technology 41, 5 (dec 2020), 1035–1051. https://doi.org/10.1080/0144929x.
2020.1851768

[44] Marcos Serrano, Laurence Nigay, Jean-Yves L. Lawson, Andrew Ramsay, Roderick
Murray-Smith, and Sebastian Denef. 2008. The openinterface framework: a tool

for multimodal interaction.. In CHI '08 Extended Abstracts on Human Factors in
Computing Systems. ACM. https://doi.org/10.1145/1358628.1358881

[45] Wai Wa Tang, Kenneth W.K. Lo, Alvin T.S. Chan, Stephen Chan, Hong Va Leong,
and Grace Ngai. 2011. i*Chameleon: a scalable and extensible framework for mul-
timodal interaction. In CHI '11 Extended Abstracts on Human Factors in Computing
Systems. ACM. https://doi.org/10.1145/1979742.1979703

[46] Christiana Tsiourti, João Quintas, Maher Ben-Moussa, Sten Hanke, Niels Alexan-
der Nijdam, and Dimitri Konstantas. 2017. The CaMeLi Framework—A Multi-
modal Virtual Companion for Older Adults. In Studies in Computational Intelli-
gence. Springer International Publishing, 196–217. https://doi.org/10.1007/978-
3-319-69266-1_10

[47] Matthew Turk. 2014. Multimodal interaction: A review. Pattern Recognition
Letters 36 (jan 2014), 189–195. https://doi.org/10.1016/j.patrec.2013.07.003

[48] Bryan Wang, Gang Li, and Yang Li. 2022. Enabling Conversational Interaction
with Mobile UI using Large Language Models. https://doi.org/10.48550/ARXIV.
2209.08655

[49] Silei Xu, Giovanni Campagna, Jian Li, and Monica S. Lam. 2020. Schema2QA:
High-Quality and Low-Cost Q&A Agents for the Structured Web. In Proceed-
ings of the 29th ACM International Conference on Information & Knowledge
Management. ACM. https://doi.org/10.1145/3340531.3411974

[50] Jackie (Junrui) Yang, Gaurab Banerjee, Vishesh Gupta, Monica S. Lam, and
James A. Landay. 2020. Soundr: Head Position and Orientation Prediction Using
a Microphone Array. In Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems. ACM. https://doi.org/10.1145/3313831.3376427

[51] Jackie (Junrui) Yang, Tuochao Chen, Fang Qin, Monica S. Lam, and James A.
Landay. 2022. HybridTrak: Adding Full-Body Tracking to VR Using an Off-the-
Shelf Webcam. In CHI Conference on Human Factors in Computing Systems. ACM.
https://doi.org/10.1145/3491102.3502045

[52] Jackie (Junrui) Yang, Monica S. Lam, and James A. Landay. 2020. DoThisHere:
Multimodal Interaction to Improve Cross-Application Tasks on Mobile Devices.
In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and
Technology. ACM. https://doi.org/10.1145/3379337.3415841

[53] Jackie (Junrui) Yang and James A. Landay. 2019. InfoLED: Augmenting LED
Indicator Lights for Device Positioning and Communication. In Proceedings of the
32nd Annual ACM Symposium on User Interface Software and Technology. ACM.
https://doi.org/10.1145/3332165.3347954

[54] Chris Zimmerer, Erik Wolf, Sara Wolf, Martin Fischbach, Jean-Luc Lugrin, and
Marc Erich Latoschik. 2020. Finally on Par?! Multimodal and Unimodal In-
teraction for Open Creative Design Tasks in Virtual Reality. In Proceedings
of the 2020 International Conference on Multimodal Interaction. ACM. https:
//doi.org/10.1145/3382507.3418850

A GRAMMAR OF REACTGENIEDSL

topFvalue | all_symbol

all_symbolFindex_symbol(.all_symbol)?
index_symbolFfunction_call | symbol([int_literal])?
function_callFsymbol((parameter_list?))

parameter_listFparameter_pair(,parameter_pair)∗
parameter_pairFsymbol:value

valueFtrue | false | int_literal | float_literal | all_symbol |
accessor | "string" | [array_value]

accessorF.value
array_valueFvalue(,value)∗

symbolF[𝑎 − 𝑧𝐴 − 𝑍_] [𝑎 − 𝑧𝐴 − 𝑍0 − 9_]∗
int_literalF(+ | -)?[0 − 9]+

float_literalF(+ | -)?[0 − 9] ∗ .[0 − 9]+

https://doi.org/10.1016/j.specom.2009.08.002
https://doi.org/10.1145/3453483.3454046
https://multion.ai/
https://learn.microsoft.com/en-us/dotnet/desktop/winforms/overview/?view=netdesktop-7.0
https://learn.microsoft.com/en-us/dotnet/desktop/winforms/overview/?view=netdesktop-7.0
https://doi.org/10.1348/000711006x126600
https://doi.org/10.1177/154193120605000909
https://doi.org/10.1145/2070481.2070500
https://doi.org/10.3115/v1/w14-4335
https://doi.org/10.1145/3357251.3357581
https://doi.org/10.1145/259964.260123
https://doi.org/10.1145/259964.260123
https://doi.org/10.1145/2470654.2481301
https://doi.org/10.1145/3173574.3173610
https://doi.org/10.1145/1452392.1452444
https://doi.org/10.1145/3210240.3210339
https://doi.org/10.1145/3210240.3210339
https://doi.org/10.1080/088395199117504
https://doi.org/10.1080/088395199117504
https://doi.org/10.1145/1570433.1570476
https://doi.org/10.1145/98188.98204
https://doi.org/10.1145/259963.260472
https://doi.org/10.1145/259963.260472
https://doi.org/10.1162/tacl_a_00190
https://doi.org/10.1162/tacl_a_00190
https://doi.org/10.1145/3379337.3415848
https://doi.org/10.1145/3379337.3415848
https://doi.org/10.1080/0144929x.2020.1851768
https://doi.org/10.1080/0144929x.2020.1851768
https://doi.org/10.1145/1358628.1358881
https://doi.org/10.1145/1979742.1979703
https://doi.org/10.1007/978-3-319-69266-1_10
https://doi.org/10.1007/978-3-319-69266-1_10
https://doi.org/10.1016/j.patrec.2013.07.003
https://doi.org/10.48550/ARXIV.2209.08655
https://doi.org/10.48550/ARXIV.2209.08655
https://doi.org/10.1145/3340531.3411974
https://doi.org/10.1145/3313831.3376427
https://doi.org/10.1145/3491102.3502045
https://doi.org/10.1145/3379337.3415841
https://doi.org/10.1145/3332165.3347954
https://doi.org/10.1145/3382507.3418850
https://doi.org/10.1145/3382507.3418850

	Abstract
	1 Introduction
	2 Related work
	2.1 Multimodal Interaction Systems
	2.2 Graphical UI frameworks
	2.3 Voice UI frameworks
	2.4 Multimodal Interaction Frameworks

	3 System Design
	3.1 Design goals
	3.2 Theory of Operation
	3.3 System Components
	3.4 System Workflow

	4 Evaluation
	4.1 Example Apps
	4.2 Elicitation Study
	4.3 Usability Study with Prototype Applications

	5 Discussion
	5.1 Limitations and Future Work
	5.2 Safety and Implications

	6 Conclusion
	Acknowledgments
	References
	A Grammar of ReactGenieDSL

